

Institute of Geology, Oil and Mining named after K. Turysov

Department of «Petroleum Engineering»

EDUCATIONAL PROGRAM

7M07146 «Gas Engineering»

Code and classification of field of education: 7M07 «Engineering, Manufacturing and Civil engineering» Code and classification of direction of personnel training : «7M071 Engineering and engineering trades» Group of educational programs: M210 «Transmission system and» infrastructure Level on NQF: 7 Level on SQF: 7 Period of study: 2 Volume of the credits: 120 Educational program 7M07146 «Gas Engineering» approved at the meeting of the Academic Council of KazNRTU named after K.Satbayev.

Protocol no. <u>12</u> from 20<u>24</u> y. "<u>12</u>" <u>04</u>.

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of KazNRTU named after K.Satbayev.

Protocol no. <u>6</u> from 20<u><u>4</u> y. "<u>19</u>"<u>04</u>.</u>

Educational program 7M07146 «Gas Engineering» eveloped by the academic committee in the direction of 7M071 «Engineering and engineering trades»

Full name	Academic degree/ academic title	Position, course	Place of work, contact.	Note
Chairperson of Academi	c Committee:			
Yeligbayeva Gulzhakhan	Doctor of Chemical Sciences, Professor	Head of the Department	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	Feat
Teaching staff:				
Gulnaz Moldabayeva	Doctor of Technical Sciences, prof.	Professor	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	Lent-
Baimukhametov Murat	Candidate of Physical and Mathematical Sciences, docent	Associate Professor	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	AS
Akhymbayeva Bibinur	PhD	Associate Professor	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	Ctob)
Moldabekov Murat	PhD	Associate Professor	NCJS «Kazakh National Research Technical University	Aleenof

			named after K.I.Satbayev»	
Smashov Nurlan	Candidate of Technical Sciences, docent	Associate Professor	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	MH 28
Imansakipova Nurgul	PhD	Senior Lecturer	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	Alf
Yskak Ardak	PhD	Senior Lecturer	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	AP
Employers:				
Nysangaliyev Amangali	Doctor of Technical Sciences, Professor, Academician of the National Engineering Academy of the Republic of Kazakhstan	Director of the Center for Ground Design	JSC «Kazakh Institute of Oil and Gas»	Ab
Bekbau Bakbergen	PhD	Leading Researcher, Modeling Service	«KMG Engineering» LLP	Faugh
Nurkas Zhasulan		Director	LLP «Manul»	Haf
Students:				
Sadvakasov Mukan	Doctoral student in the educational program 8D07202 – "Petroleum Engineering"	2nd year	NCJS «Kazakh National Research Technical University named after K.I.Satbayev»	Just

Table of contents

1.	Description of the educational program	5
2.	Purpose and objectives of the educational program	5
3.	Requirements for assessing learning outcomes of an educational	6
	program	
4.	Passport of the educational program	6
4.1.	General information	6
4.2.	The relationship between the achievability of the formed learning	9
	outcomes in the educational program and academic disciplines	
5.	Curriculum of the educational program	21

1. Description of the educational program

The educational program 7M07146 "Gas Engineering" is aimed at training masters who are able to independently solve a wide range of engineering problems in the field of the gas industry and conduct scientific and pedagogical activities.

The educational program is designed to train specialists in the field of development and operation of gas fields, well drilling, transportation and storage of hydrocarbons.

The curriculum of the 7M07146 "Gas Engineering" educational program has been developed taking into account the curricula of the master's degree program of famous research and engineering universities of the world, such as Colorado Schools of Mines, University of Lorraine. The curriculum is fully consistent with current trends in the development of science and technology used in the modern gas industry. The educational program is based on the state educational standard for higher professional education; the professional standard. Atlas of New Professions is a universal pipeline section manager. The professional standard for this educational program is:

1) Operational dispatch management;

2) Teacher (faculty) of organizations of higher and (or) postgraduate education;

3) Production technology

To get acquainted with innovative technologies and new types of production, it is provided for mandatory scientific internship in such companies as JSC NC "QazaqGaz", JSC "Kazmunaygas", LLP "KMG Engineering", JSC "Kazakh Institute of Oil and Gas". Under the academic mobility program, undergraduates have the opportunity to complete internships at leading engineering universities in the world.

At all levels of training, teaching is conducted by highly qualified teaching staff, including graduates of universities around the world and the Bolashak program.

Graduates can choose a different career path. They can start working directly as practicing engineers in industry, or they can continue their doctoral studies in petroleum engineering.

The Master's degree program "Petroleum Engineering" is the second level of qualification of the three-level higher education system, it lays the foundation for doctoral programs. The educational program 7M07146 "Gas Engineering" was reviewed at a meeting of the Educational and Methodological Council of KazNRTU named after K.I. Satpayev and approved at a meeting of the Academic Council of KazNRTU named after K.I. Satpayev.

2. Purpose and objectives of the educational program

EP purpose: The aim of the Gas Engineering program is to form highly qualified specialists for the gas industry with a high level of competence, comprehensively developed, with broad technical knowledge and skills in the field of engineering

and technology for the design and operation of oil and gas storage facilities and pipelines.

EP objectives:

- the formation of general cultural competencies of graduates (competencies of social interaction, self-organization and self-government, of a systemic activity nature), the implementation of a competent approach in the formation of general cultural competencies of graduates should be ensured by a combination of educational and extracurricular work; the socio-cultural environment necessary for the all-round development of the individual;

- formation of general professional and professional competencies of graduates.

3. Requirements for assessing learning outcomes of an educational program

The educational program has been developed in accordance with the State Mandatory Standards of Higher and Postgraduate Education, approved by Order No. 2 of the Minister of Science and Higher Education of the Republic of Kazakhstan dated July 20, 2022 (registered in the Register of State Registration of Regulatory Legal Acts under No. 28916) and reflects the learning outcomes on the basis of which curricula are developed (working curricula, individual students' curricula) and work study programs in disciplines (syllabuses).

Assessment of learning outcomes is carried out according to the developed test tasks within the framework of the educational program in accordance with the requirements of the state mandatory standard of higher and postgraduate education.

When assessing learning outcomes, uniform conditions and equal opportunities are created for students to demonstrate their knowledge, skills and abilities.

4. Passport of the educational program

N⁰	Field name	Note								
1	Code and classification of	7M07 «Engineering, Manufacturing and Civil								
	field of education:	engineering»								
2	Code and classification of direction of personnel training :	7M071 «Engineering and engineering trades»								
3	Group of educational programs: M210 «Transmission system and infrastructure»									
4	Name of educational program	7M07146 «Gas Engineering»								
5	Brief description of the educational program	The main professional educational program (EP) of the magistracy, implemented by the Kazakh National Research Technical University named after K.I. Satpayev and approved by the Ministry								

4.1. General information

		of Education and Science of the Republic of
		Kazakhstan in the field of training "Gas
		Engineering" is a system of documents developed
		and approved taking into account the requirements
		of the labor market on the basis of the state
		educational standard of higher education.
		EP regulates the goals, expected results, content.
		conditions and technologies for the implementation
		of the educational process assessment of the
		quality of the graduate's training in this area of
		training and includes the curriculum work
		programs of modules / disciplines internship
		programs state final certification and other
		materials to ensure quality education
		The development and management of the
		educational program of postgraduate education
		"Gas Engineering" is carried out in accordance
		with the standard and working curriculum
		developed by the Kazakh National Research
		Technical University named after KI Satnaey and
		approved in the prescribed manner
6	EP purpose	The aim of the Gas Engineering program is to form
0		highly qualified specialists for the gas industry
		with a high level of competence comprehensively
		developed with broad technical knowledge and
		skills in the field of engineering and technology for
		the design and operation of oil and gas storage
		facilities and ninelines
7	FP type	New FP
8	Level on NOF	7
9	Level on SOF	7
10	Distinctive features of the FP	no
11	List of competencies of the educational	1. Apply knowledge of oil and gas engineering and
11	program.	skills of critical analysis, evaluation and synthesis of
	program.	new ideas in professional activities;
		2. Apply qualitative and quantitative methods of
		analysis, collection, integration and interpretation of
		data in accordance with the standards of the oil and gas
		industry; 3. Have a steady desire to constantly improve
		their professional knowledge and self-development; 4.
		Conduct independent research based on their own skills
		the development of the oil and gas industry:
		5 Have a developed ability to conduct professional
		written and oral communication with all stakeholders in
		the oil and gas industry; 6. Have the ability to
		demonstrate high professional qualities, ethics, and
		environmental culture while performing production
		and/or scientific tasks in the oil and gas industry; 7.To
		evaluate the commercial principles of business
		activities, satisfaction of production and public needs in
10	Educational program lagran	1. To apply knowledge of and engineering and
12	eucational program learning	1. 10 apply knowledge of gas engineering and skills of oritical analysis, evolution and synthesis
1	outcomes.	Skins of children analysis, evaluation and synthesis

		of new ideas in professional activities;						
		2. To apply qualitative and quantitative analysis						
		methods to solve technological problems, collect,						
		integrate and interpret data according to gas						
		industry standards;						
		3. To design technological processes of gas						
		pumping and storage in tanks, including with the						
		use of modern computer technology;						
		4. To conduct independent research based on their						
		own skills and abilities to obtain scientific results						
		that contribute to the development of the gas						
		industry and hydrocarbon gas processing products;						
		5. To demonstrate a developed ability to conduct						
		professional written and oral communication with						
		all stakeholders in the gas industry and transfe						
		knowledge;						
		6. To Identify, formulate and solve technical						
		problems during the operation of gas storage						
		facilities, as well as pipelines during the						
		transportation of gas and hydrocarbon processing						
		products;						
		7. To have the ability to demonstrate high						
		professional qualities and ethics during the						
		performance of production and/or scientific tasks						
10		of the oil and gas industry						
13	Form of training	Full time						
14	Period of study	2						
15	Volume of the credits	120						
16	Language of education	Kazakh, Russian						
17	Academic degree awarded:	Master of Technical Sciences						
18	Developer and author:	Doctor of Chemical Sciences, Professor,						
		Yeligbayeva Gulzhakhan and Academic						
		Committee						

№	Name of discipline	Short description of discipline	Amount of		The fo	rmed e	ducatio	nal out	comes	
			creatts	PO1	PO2	PO3	PO4	PO5	PO6	PO7
		Cycle of basic disciplines								
		University component								
1	Foreign language (professional)	The purpose of the course is to improve and develop foreign language communication skills in the professional and academic field. Course content: general principles of professional and academic intercultural oral and written communication using modern pedagogical technologies (round table, debates, discussions, analysis of professionally	3					v		V
2	History and philosophy of science	Purpose: To explore the history and philosophy of science as a system of concepts of global and Kazakh science. Contents: The subject of philosophy of science, dynamics of science, the main stages of the historical development of science, features of classical science, non-classical and post-non-classical science, philosophy of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of science, social and moral responsibility of a scientist and engineer.	3				v	v		

4.2. The relationship between the achievability of the formed learning outcomes in the educational program and academic disciplines

3	Higher school pedagogy	Purpose: To learn how to solve scientific and pedagogical problems, taking into account new technologies in the field of higher education. Contents: methodological and theoretical foundations of higher school pedagogy, modern pedagogical technologies, planning and organization of learning and upbringing processes, the use of communicative technologies of subject-subject interaction between a teacher and a student in the	3			v	V
		resource management in higher educational					
		institutions.					
4	Psychology of management	Objective: To acquire skills in making strategic and managerial decisions, taking into account the psychological characteristics of the individual and the team. Content: the modern role and content of psychological aspects in management activities, methods for improving psychological literacy, the composition and structure of management activities, both at the local and foreign levels, the psychological feature of modern managers. Cycle of basic disciplines	3			v	v
4		Election Component	~		1		
1	Automation of design of pipeline transport systems	Purpose: preparation of master's students for production-technological and project activities in the field of gas production, transportation and storage, as well as for organizational and managerial activities in interdisciplinary areas of oil and gas technologies using the principles of management and management. Contents: training in methods of situation assessment and decision-making in organizational and technical systems, possession of skills of independent research activity, acquisition of knowledge and skills to ensure failure-free	5	V	V		

		operation of automation systems, as well as the study of problems of automated design of technological processes, principles of design automation and a set of design automation tools.							
2	Innovative technologies for the construction and repair of gas storage facilities	Purpose: is to form master's students with in- depth knowledge and practical skills necessary for mastering advanced methods and technologies in construction, repair and modernization of gas storages. The main emphasis is placed on studying innovative approaches to design, construction and maintenance of gas storage facilities, as well as on mastering modern equipment and diagnostic methods. This allows future specialists to effectively solve problems related to ensuring safety, reliability and economic efficiency of gas storage facilities in conditions of rapid technological development and environmental sustainability requirements. Contents: study of advanced methods and technologies in the design, construction, repair and modernization of gas storage tanks. The content includes the analysis of modern approaches to the construction of gas reservoirs, the study of innovative equipment and tools for repair and maintenance, as well as mastering the methods of diagnostics and control over the condition of gas reservoirs. Master students will also gain knowledge of modern requirements for safety and efficiency of gas storage, as well as technologies aimed at improving the environmental sustainability of gas storage facilities.	5		v	v			
	Intellectual property and research	Purpose: to train specialists who can effectively manage rights to the results of intellectual activity in the field of science, as	5	v				v	

		well as ensure their legal protection and commercialization. Content: analysis of legal protection of research and development results, methods of commercialization of scientific inventions, ethical and legal aspects of scientific activity in the context of IP.						
3	Design of systems for the development of hydrocarbon deposits	Purpose: professional training of undergraduates for work in scientific and design organizations related to the development of oil and gas fields, including the formation of calculation and design skills and interaction with various specialists. Contents: formation of knowledge and skills in the field of design of hydrocarbon field development systems, as well as the application of these skills in practice when designing the development of hydrocarbon fields.	5			v		v
4	Strength and stability of inclined-horizontal multi-barrel wells	Purpose: comprehensive training of future specialists capable of effectively managing the processes of creation and operation of inclined-horizontal multilateral wells, ensuring their strength, stability and economic feasibility. Contents: introduction to the problems of such wells, study of physical fundamentals and strength principles, stability analysis, design, operation, safety and environmental aspects, economic aspects, as well as innovations and development prospects. The course includes practical assignments and projects, providing students with a full range of knowledge and skills to effectively manage the creation and operation of deviated-horizontal multilateral wells.	5	v	v			

	Sustainable development strategies	Purpose: to foster comprehensive expertise and skills in formulating and executing sustainable development strategies across different tiers, to equip individuals with a profound understanding of sustainable development practices. Content: encompasses an extensive array of subjects, spanning from global environmental dilemmas like climate change, biodiversity loss, and natural resource exhaustion to socio-economic dimensions such as disparity, healthcare, and education.	5	V		v		
5	Technological modes of operation of gas transmission systems	Purpose: familiarization of master's students with technology and mode-technological processes of field and interfield gas gathering and treatment systems, gas transportation and pipeline distribution systems of high pressure, as well as the development of their skills to apply this knowledge for further mastering of special disciplines. Contents: The discipline is aimed at familiarizing master's students with the technology and mode-technological processes of field and interfield gas gathering and treatment systems, gas transportation and pipeline distribution systems of high pressure. It also develops skills to apply the acquired knowledge for further mastering of special disciplines. The content includes the study of scientific fundamentals, terms and concepts used in the operation of gas transmission systems, methods of localization and elimination of abnormal situations, as well as the development of measures to improve the reliability, safety and efficiency of gas supply systems operation.	5		v		v	
6	Control of corrosion processes in the gas	Purpose: to provide master's students with in-	5		v		v	
		effective control and management of corrosion						

	7	1		 		1	 	
		processes in gas transportation systems. The emphasis is on developing the practical skills required to ensure the safety, reliability and durability of gas transmission infrastructure, as well as the importance of complying with standards and regulations for corrosion control in the gas industry. Contents: study of the basic principles of corrosion, mechanisms of its development and consequences for elements of gas transportation systems. Within the framework of the course, master students study methods of corrosion diagnostics and monitoring, as well as various strategies and technologies for protecting metal structures from corrosion damage. Special attention is paid to the use of modern tools and equipment for corrosion prevention and control, including cathodic protection, coatings and corrosion inhibitors. In addition, master students study legislative and regulatory aspects as well as best practices in the field of corrosion						
		ensure safety reliability and efficiency of gas						
		transportation systems.						
		Cycle of profileded disciplines		 			 	
		University component						
1	Information technologies in the gas transmission system	Purpose: training in information technologies for the analysis, forecasting and optimization of gas transportation processes using mathematical modeling and optimization methods. Content: The discipline covers: Mathematical modeling of gas transportation processes. Methods for optimizing gas transportation processes. Analysis and forecasting of the operation of the gas transmission system: Security of information	5	v	v			
		transmission system: Security of information systems						

2	Computer technologies for solving problems of pipeline transport	Purpose: mastering software tools: AutoCAD, MATLAB, Simulink, ANSYS, and others. Practical application of software tools in laboratory work for modeling pipeline systems and analyzing their characteristics. Content: The disciplines cover the joint use of AutoCAD, MATLAB, Simulink and ANSYS for complex analysis of pipeline systems in: 1. Pipeline design: - project development; - performance assessment; 2. operation of pipelines: - monitoring and management of pipeline systems; - diagnostics and forecasting of malfunctions; - modeling and analysis of emergency situations	5		v	v			
3	Monitoring of pipeline transport equipment	Purpose: to use monitoring data to assess the condition of pipeline equipment, predict possible damages and accidents, develop and implement measures to prevent them. Content: Methods for monitoring the condition of equipment. Forecasting of possible damages and accidents. Analysis of monitoring data. Assessment of the condition of pipeline equipment. Development and implementation of measures to prevent accidents. Ensuring the safety and reliability of pipelines.	5			v	v		
4	Reliability and safety of main pipelines	Purpose: to apply methods for assessing the reliability of main pipelines to determine the probability of accidents and assess their consequences. Content: the discipline covers statistical methods of reliability assessment, mathematical modeling of pipeline reliability. Assessment of the probabilities and consequences of accidents, analysis, restoration and repair of damaged pipelines	5	v				v	

5	Calculation of strength, stability and displacement of underground pipelines	Purpose: application of various calculation methods for the analysis of loads, stresses and deformations in underground pipelines. Features of operation and maintenance of underground pipelines, identification and analysis of possible causes of damage and accidents. Content: the discipline covers analytical and numerical methods of calculations, as well as the basics of the finite element method. Analysis of the calculation results and their interpretation. Fault prediction. Practical application.	5	v	v		
6	Pedagogical practice	Application in the educational process of modern scientific knowledge of the discipline, the use of innovative technologies in the organization of the educational process. Creating the conditions to achieve professional competence in accordance with the requirements of the standard in the direction of training. Preparation for teaching activities in the mining, metallurgical and oil and gas production. Creation of scientific and pedagogical educational programs related to modern tasks of mining, metallurgical and oil and gas production, for use in scientific and scientific and technical universities and educational institute	6			v	v
7	Research practice	The research practice of the undergraduate is conducted in order to familiarize himself with the latest theoretical, methodological and technological achievements of domestic and foreign science, modern methods of scientific research, processing and interpretation of experimental data.	8			v	v
		Cycle of profileded disciplines					
		Election Component					

1	Methods and algorithms for solving applied	Purpose: training of specialists with the	5	v		v	
	problems of pipeline transportation of oil and	necessary competencies to solve complex					
	gas.	engineering problems and ensure efficient					
		operation of pipeline systems in the oil and gas					
		industry. Contents: the program studies					
		numerical simulation of hydraulic transport,					
		optimization of pipeline system parameters,					
		development of algorithms for monitoring and					
		control of oil and gas transportation processes.					
		Special attention is paid to the application of					
		modern software and computational methods					
		to solve specific engineering problems, which					
		allows students to develop practical skills and					
		competencies necessary for successful work in					
		the oil and gas industry.					
2	Perspective processes of hydrocarbon gas	The purpose: The purpose of the discipline is	5		v	v	
		the study of hydrocarbon gases, their					
		purification, processing and preparation for					
		transport. Contents: Characteristics of primary					
		hydrocarbon gases and final products of their					
		processing. General schemes of preparation					
		and processing of hydrocarbon gases.					
		Preparation of gas for processing. Purification					
		of gases from harmful impurities.					
		Characteristics of harmful impurities.					
		Purification of gases from mercaptans.					
		Utilization of hydrogen sulfide. Deep drying of					
		natural gas. Extraction of heavy hydrocarbons					
		from gas. Extraction of helium from purified					
		gas. Stabilization and processing of gas					
1		condensates.					

3 Dispatch Decision Support Systems in Gas Pipeline Transport Management	Goal: Mastering methods and tools for analyzing and forecasting technological processes of gas transportation. Mastering the skills of managing technological processes of gas transportation in real time. Content: Methods of statistical data analysis. Modeling of technological processes. Modern technologies in the management of pipeline gas transportation. Development and implementation of dispatch decision support systems.	5		V		 v	
4 Modern concepts of risk assessment and management in the gas industry	Purpose: is to provide master's students with comprehensive knowledge and skills to effectively analyze, assess and manage risks associated with activities in the gas industry. The main focus is on developing strategies for risk prevention and minimization, safety and compliance, which enables master students to be prepared for real challenges and situations in the gas industry, as well as to make informed and effective management decisions. Contents: study of methods and strategies for analyzing, assessing and managing risks specific to activities in the gas industry. The course emphasizes the study of modern risk management concepts such as risk analysis methodologies, scenario modeling, and the development of risk monitoring and control systems. Additionally, regulatory and legislative aspects as well as international standards in the field of risk management in the gas industry are discussed.	5	v		v		

5	Technological reliability of pipeline systems	Objective: to study methods and technologies to improve the reliability and safety of pipeline systems. Content: Methods for improving the reliability of pipeline systems. Methods of reliability assessment and analysis. Methods of mathematical modeling. Ensuring the safety of pipeline systems. The basic principles of security. Risk assessment and emergency management.	5	v			v	
6	Management of gas transmission systems	Purpose: To study the basics of gas flow management, monitoring and control, telecommunications and communications, principles of design and development of gas transmission systems, planning and optimization of resource allocation, development of technologies and security systems, management and coordination of work on the design, operation and management of gas pipelines and storage facilities. Content: the disciplines cover: 1. Principles of designing gas transmission systems; 2. Planning and optimization of resource allocation; 3. Development of technologies and security systems; 4. Monitoring and control of gas transmission systems; 5. Telecommunications and communication systems; 6. Management and coordination of work	5	v			V	
7	Chemistry and technology of organic substances (based on gas raw materials)	The purpose: The study of the main types of raw materials in the gas chemical industry. Contents: Gas compositions, the main direction of their processing and use. Production of sulfur and other commercial products from gases. Production of commercial fuels, lubricants and special products; requirements for commercial products; compounding; liquefied gases; liquid	5		v		v	

		fuels and additives to them; oils, scope of application; plastic lubricants, their main types. Features of efficient processing of hydrocarbon gases into multi-tonnage products, construction of technological and energy schemes of large- tonnage energy-intensive chemical industries.						
8	Economics and management of pipeline transportation of hydrocarbons	Purpose: to prepare undergraduates for effective management and economic analysis of pipeline transportation of hydrocarbons Content: The discipline covers the theoretical foundations of cost and profitability analysis: - financial planning and budgeting; - economic efficiency and profitability of projects	5	v			v	

5. Curriculum of the educational program

CURRICULUM of Educational Program on enrollment for 2024-2025 academic year

Educational program 7M07146 - "Gas engineering" Group of educational programs M210 - "Transmission networks and infrastructure"

	Form of study: full-time Duration of study: 2 year				Academ	ic degree	: master	oftech	nical sei	ences	
	Name of disciplines	Cycle	Total	Tota	Classro	SIS	Form	Allo	cation o	f face-t	o-face
Discipline			amoun t in	hour	om	ing	control	1 00	ourse 2	2 0	ourse
code			credits	s	lec/lab/	TSIS)	control	semest	semest	semest	semeste
				0.34	pr	in		er	er	er	r
	CYCLE OF BASIC DI	SCIPL	INES (I	3D)							
	M-1. Module of basic training	(unive	rsity co	mpon	ent)	1 1/2011	- 32	1. 22	1		-
LNG213	Foreign language (professional)	BOUC	5	150	0/0/3	105	8	1			-
HUM214	Management Psychology	BOUC	3	90	1201		15	1	-		-
HUM212	History and philosophy of science	18YUC	2	-90	1/0/1	60	15		1		
riomana.	M-2. Petroleum Engineering	Basic 7	Fraining	Mod	ule			-			
PET200											
	Strength and stability of inclined-horizontal multi-barrel wells			130	2/9/1	102					
		BD				1.02	1	14			
PET201	Design of systems for the development of hydrocarbon deposits	CCII	2	150	2/0/1	103	1	5			
				1			1				
MNG781	Intellectual property and research			150	2/0/1	105					
PET203	Technological modes of operation of gas transmission systems			150	2/0/1	0105					
		LCCH	5				E	3	-		
PET205	Automation of design of pipeline transport systems			150	2/0/1	105					
The second	Automation of acage of pipeline componing of the			1310		-	1	-	-		
	Innovative technologies for the construction and repair of gas storage			1	1.120020	1110/28					
PET287	facilities			1,50	2.00/1	105			1		
					-	+	+				
		13D CCH	5			1000	¥.			3	
PET288	Control of corrosion processes in the gas transmission system			150	2/0/1	105:					
		-		-							-
MNG782	Sustainable development strategies			150	2/0/1	105					
	CYCLE OF PROFILE I	DISCIE	LINES	(PD)			1.				
	M-3. Petroleum Engineering Pr	ofessio	nal Act	ivity N	lodule						
	Computer to the standard for each loss methods of himdless transport	PDUC	+	150	70/1	105	100	5			
PE12/9	Computer technologies for solving problems of pipeline transport	TINGE	1 2	196	40001	1995				-	_
0127250	Calculation of strength, stability and displacement of underground	PIDUC	5	150	1.02	105	E	5			
The Factor	pipelines	and a set		1000	4.0.0	1005	19	-	3	-	-
PET281	Reliability and safety of main pipelines	PENDE	2	150	28.84	115	1	-			
PET282	Modern concepts of risk assessment and management in the gas			150	2/0/3	105					
	Notheds and algorithms for solving applied problems of pupeling	CCII	3				1 注		5	-	
PET285	transportation of oil and gas	1200044		150	2///1	105			1		
-	transportation of on the gas			1211	2004	1015			-	-	
PET284	Management of gas transmission systems	ED.		124	-2404	192	1		1	-	
PET285		CCH	×.	150	2.04	105		1	1		
	Economics and management of pipeline transportation of hydrocarbons			120	2020	-	1000	-	-	+	
PET286	Information technologies in the gas transmission system	PESTIC	1	150	2004	105	E.		3		
PE1278	Monitoring of pipeline transport equipment	10010	3	150	2/0/1	105	t:	-	-	5	-
PET289	Technological reliability of pipeline systems			150	20/1	105					
-	Diensteh Decision Support Systems in Gas Pipeline Transport	CCH	5	100	-	10.00	LC:			5	
PET 290	Management			130	2/0/1	105					1
DETEND	Democrative preserves of hydrogenhan gas	1	1	150	28)/1	105					
PE1291	rerspective processes of nyarocarbon gas	CI4		(30	-47111	1990	12			- 5	
PET292	Chemistry and technology of organic substances (based on gas raw	CCH	1	150	2/0/1	105	1				
	materials)	1		1	1			1	_	1	
	M-4. Practice-ori	iented 1	module	-	-	-	-	-	T	N	1
AAP273	Research practice	2010	U H								8
PLAP209	M-5, Experimental	researc	h modu	le		-		-			
	Research work of a master's student including interaction and completion of a	RWM	8 4					4			
AAP268	master's thesis	1)L	2								
-	Remark work of a matterie student, wal view interactive and complation of a	125254	5 4						4		
AAP268	master's thesis	UC									
-	Research work of a magnetic student, including unaceshin and environment of a	RWM	\$ 2	-		1				2	-
AAJ-25	master's thesis	DC									
-	Research under of a montade student, including intersuches and associations of a	1211/24		1			-			1	-
AAP255	master's thesis	UC	14	. II							14
	Lawrence & Allower	-		-				_			-

-	M-6. Module of	final atte	station					
ECA212	Preparation and defense of a master's thesis	FΛ	8					8
	Total based on UNIVERSITY:				30	30	30	30
					60		60)

	Number of credits for the entire period of study		C,	edits	
Cycle code	Cycles of disciplines		university component (UC)	component of choice (CCH)	Total
BD	Cycle of basic disciplines		20	15	35
PD	Cycle of profile disciplines		33	20	53
	Total for theoretical training:	Û	53	35	88
	RWMS				24
FA	Final attestation	8			8
	TOTAL:	8	53	35	120

Decision of the Academic Council of KazNRTU named after K.Satpayev. Protocol Na/Lor " $\frac{12}{2024}$ " $\frac{14}{2024}$. Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Protocol Na Cor " $\frac{19}{19}$ " $\frac{19}{2024}$, Decision of the Academic Council of the Institute. Protocol Na/Cor " $\frac{19}{19}$ " $\frac{19}{2024}$.

Vice-Rector for Academic Affairs

Director of the Institute of Geology, Oil and Gas Engineering

Department Head Institute of "Petroleum engineering"

Specialty Council from employers

R.K. Uskenbayeva am A.Kh.Syzdykov G.Zh.Yeligbayeva

A.N.Nysangaliyev